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Do the Simple and 2/3 Majority Models 
Belong to the Same Universality Class?: 
A Monte Carlo Approach 
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We extend the majority model (introduced by Tsallis in 1982) in the sense that 
the required majority might be different from the simple majority. We simulate 
these models for typical cases which include simple and 2/3 majorities. We 
exhibit the average cluster size as well as the order parameter as functions of p, 
the concentration of one of the two possible constituents. No crossover exists 
between the simple- and non-simple-majority models. 

KEY WORDS: Geometrical critical phenomena; majority model; crossover; 
Monte Carlo. 

Majority-rules arguments have been frequently used in connection with 
real-space renormalization groups (RG). Along this line a specific 
geometrical model (majority model) was introduced in 1982. (~) The model, 
which refers to plaquettes of two possible colors (bichromatic model) and 
which we recall in detail later, was on that occasion discussed within an 
RG framework. More precisely, its finite-size scaling properties were 
analytically exhibited and compared with similar suggestions (2'3) for 
standard models. Within the same philosophy, the model was recently 
generalized (4/ in order to permit an arbitrary number of different colors 
(poIychromatic model). However, even in its generalized version, the 
majority which the model is based upon is the simple majority. In other 
words, and assuming we illustrate the concept for the bichromatic model, 
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majority occurs when more than 1/2 of the plaquettes belong to a given 
color. It is along this line that we shall here generalize the model. More 
specifically, in the present paper we consider majorities higher than the 
simple one, i.e., majority occurs (in the bichromatic model) when more 
than Po of the plaquettes belong to a given color (Po = 1/2 and P0 = 2/3, 
respectively, correspond to simple and 2/3 majorities). Within a Monte 
Carlo-like simulation framework, we study the cases 1/2 ~< Po ~< 1, with 
emphasis on the problem of whether P o - 1 / 2  is or is not a relevant 
parameter for the critical universality class of the system. 

We consider, for a given choice of P0, a (periodic) one-dimensional 
L-sized strip of "black" and "white" randomly chosen plaquettes; the strip 
has been constructed with occupancy probabilities for the black and white 
colors respectively given by p and 1 - p with 0 ~< p ~< 1 (in fact, the dimen- 
sionality of the system is completely irrelevant(l'4); furthermore, the system 
could as well be constructed on an arbitrary set, not necessarily a Bravais 
lattice). We then choose randomly (or through any other manner) a 
plaquette (called center) of the strip, and start checking what color is the 
majority for that particular strip configuration (obtained with a fixed value 
of p): for simplicity, we check by symmetrically enlarging the piece of strip 
around the center (i.e., by considering strip clusters of length 1, 3, 5,..., up 
to approximately L). We call l the length of the strip cluster for which a 
change of majority occurs (from say black majority into white majority) if 
it does; if the randomly chosen center turned out to be white, then l = 0 for 
this event. We repeat this operation No times (each of which corresponds 
to a new random strip configuration). We calculate the black-dominating 
mean cluster size (I)all clusters by taking into account all clusters as well as 
the mean finite cluster size ( l  )nnite clusters = ~ by only considering "finite" 
clusters (to be more precise, by only considering those clusters whose 
majority has changed before l equals L; if no change has occurred up to 
size L, the cluster will be referred to as "infinite," a denomination which of 
course becomes strictly correct only in the L ~ oe limit). It is clear that in 
the (L, N o ) ~  (oe, oe) limit: (i) when p increases from 0 to P0, (/)allclusters 
and ~ coincide and vary from 0 to infinity; (ii) when p increases from P0 
to 1, (/)a~lclustcr~ remains infinite, whereas ~ decreases from infinity to 0; 
(iii) when p decreases from 1 to 1 - p o ,  (l)allclusters remains infinite, 
whereas ~ increases from 0 to infinity; (iv) finally, when p decreases from 
1-Po to 0, (l)a~lclusters and ~ coincide and decrease from infinity to 0. In 
the (L, No)~(oe, 0o) limit, we expect ~ to diverge as ]p_p~l-v in the 
neighborhood of the critical point (p~ = P0 when p increases from 0 to 1, 
and p~= 1 - Po when p decreases from 1 to 0). To be more precise, we 
expect, for increasing p, ~ ,-~ A, (Po - P) ~ for p < Po and ~ ,-~ A ~- (p - Po) 
for P > P o ;  for decreasing p we expect ~ A ~ [ p - ( 1 - p o ) ]  ~ for 
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p > ( 1 - p o  ) and ~ A [ [ ( 1 - p o ) - p ]  v for p < ( 1 - p o ) .  The results 
corresponding to P0 = 1/2 and P0 = 2/3 are indicated in Figs. 1 and 2. Let 
us stress that Fig. lb  is not symmetric with respect to the p = 1/2 axis; 
indeed, we are all the time focusing on the black clusters and black 
majority is first attained, for increasing p, at p = 2/3, whereas it is lost, for 
decreasing p, at p =  1/3. In Fig. 3a, the Po evolution of A f ,  A s  A~-, and 
As  is indicated as well. The results indicated in these figures have been 
obtained with typical values of No = 20,000 and L = 50,000. However, as 
we approach the critical point Pc, we must use increasingly larger values of 
L in order to avoid finite-size effects, as well as increasingly larger values 
of No in order to have sufficiently small statistical fluctuations. As 
illustrated in Fig. 2, v seems to be P0 independent and equals 1 _ 0.1 (hence, 
for d-dimensional Bravais lattices we have vd= 1 +_0.1). In other words, 
since no crossover is observed, P o -  1/2 is an irrelevant parameter  as far as 
criticality is concerned. The RG results for the simple-majority model (~,4) 
yield vd= 2, i.e., the average cluster size discussed within RG appears to be 
the square of ~ introduced here. Why this should be so remains an open 
question. 

Let us now focus on the order parameter m defined (in analogy with 
the percolation order parameter;  see, for instance, ref. 5) as follows. Once 
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Fig. t. The p dependence of the mean finite cluster size ~ for (a) Po = 1/2 (simple majority); 
(b) P0 = 2/3 (the arrows refer to increasing or decreasing p). 
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The p-dependences of ~ and the order parameter m for (a) Po = 1/2; (b) Po = 2/3. 
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Fig. 3. (a) The P0 dependences of the length ~ critical amplitudes A~, A~-, A{, and A~-; 
(b) Po dependences of the order parameter critical amplitudes B 1 and B T. 

we have fixed Po and p (as well as No and L), we randomly construct a 
strip configuration and choose its center. We then consider increasingly 
larger strip pieces around the center and check whether a black majority 
(Po majority, of course) is maintained until the size of the strip piece attains 
L (length of the entire strip): m is defined as the ratio of times a black 
majority succeeded to remain so until the end. In the (L, No)--, (0% oo) 
limit we expect that: (i) when p increases from 0 to Po, m vanishes; (ii) 
when p increases from Po to 1, m increases from 0 to 1 [m ~ Bt( p -  po) ~ 
in the neighborhood of Po]; (iii) when p decreases from 1 to l - p o ,  
m decreases from 1 to 0 {m~B+[p- (1 -po)]~} ;  (iv) when p decreases 
from 1 - p o  to 0, m vanishes again. In Fig. 4 we present the results 
corresponding to Po = 1/2 and Po = 2/3. As illustrated in Fig. 2, fl seems 
to be Po independent and equals 1 + 0.1. In Fig. 3b we present the Po 
evolution of B T and B+. 

Let us conclude by noting that the hysteresis which occurs in this 
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Fig. 4. The p dependence of the order parameter m for (a) Po = 1/2; (b) P0 = 2/3 (the arrows 
refer to increasing or decreasing p). 

model for 1/2 < P0 < 1 does not yield a discontinuity in the order parameter 
(at a single Pc for both increasing and decreasing p), contrarily to what 
occurs in standard first-order phase transitions. This is related to the fact 
that, in the present model, no conservation of "thermodynamic energy" is 
to be satisfied at the critical point(s). Let us mention at this point that the 
fact that the model remains invariant through interchange of the black 
and white colors implies that the (increasing p) po-majority model is 
isomorphic to the (decreasing p) ( 1 -  po)-majority model. 

Applications of this model are conceivable in a great variety of situa- 
tions (e.g., at group, institutional, political levels) in which decisions are 
taken through voting (simple majority, 2/3 majority, etc); see ref. 6 for 
a discussion of "political" implications of a model which essentially 
reproduces that introduced in ref. 1 and extended here. Concrete examples 
of use would be very welcome. A further improvement in the sense of 
making the model more realistic would be to allow correlations in the 
voting process of the model (a new universality class could in principle 
emerge). 
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